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Double-humped states in the nonlinear Schrodinger equation with a random potential
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The role of double-humped states in spreading of wave packets for the nonlinear Schrodinger equation
(NLSE) with a random potential is explored and the spreading mechanism is unraveled. Comparison to an
NLSE with a double-well potential is made. There are two independent effects of the nonlinearity on the
double-humped states for the NLSE: coupling to other states and destruction. The interplay between these

effects is discussed.
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We consider the discrete nonlinear Schrodinger equation
with a random potential in one dimension

d n
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where €, are random potentials chosen uniformly from the
interval [-2,2] and B is a positive constant. For 8=0, this is
the Anderson model whose eigenstates satisfy the eigenvalue
equation

Ejuj,n =Ujnt1 + Ujn-1 + € ljn (2)

and are exponentially localized. Consequently, a wave packet
that is initially localized will remain localized in the vicinity
of its initial position. A question that is subject to extensive
research is whether Anderson localization can survive the
nonlinear term S3|¢{?y [1] and was recently generalized to a
nonlinear form of the form B|¢{P# [2,3]. Numerical simula-
tions indicate that for Eq. (1), Anderson localization is de-
stroyed and subdiffusion takes place [4-8]. Heuristic argu-
ments were developed in order to explain these results
[5.7,1], but the detailed mechanism of possible spreading is
not clear. Additionally, perturbation results in S indicate that
there is some time for which nothing spreads [9,10]. A natu-
ral way to study the nonlinear Schrddinger equation (NLSE)
(1) is in the basis of the eigenstates of Eq. (2), expanding the
wave function in the form

(1) = 2 ci()exp(=iEu;,. (3)
j

For the Anderson model (2), the c; are constants while for
the NLSE (1) they vary according to
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where )
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Resonances between eigerﬁstates of the linear model (2) pro-
vide a reasonable mechanism for spreading in the dynamics
generated by Egs. (1) and (4) and it is the subject of the
present paper. A method to find these states is outlined in the
third paragraph.

Double-humped states ¢, ,¢_ are two eigenstates of Eq.
(2) which are localized over the same two sites that are far in
real space while their energies are very close. An example
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for such states appears in Fig. 1. According to Rabi’s for-
mula, for the Anderson model (2), if one places (at time ¢
=0) a wave packet on the site of one hump and the states are
exactly symmetric or antisymmetric with respect to the inter-
change of the humps, one finds the packet on the other site in
time ¢ with the probability

P(1) = sin2<AEi> , (6)
where AFE is the difference between the energies of the two
double-humped states and the time period is TRabi:ZALEﬁ. The
period is preserved also for the case when the symmetry of
the hump interchange is broken, as in the case of the random
potential. This mechanism of jumping between sites has
proved to be the main mechanism for low-frequency ac con-
ductivity in disordered media [11]. Tt is expected that its
behavior may be strongly affected by the nonlinear term. For
a double-well potential, the low-energy states are symmetric
and antisymmetric double-humped states, with the humps in
the centers of the wells. In the absence of nonlinearity, Eq.
(6) holds. But, for sufficiently strong nonlinearity, the wave
packet will be confined to the initial well [12,13]. In the
present work, we would like to explore if double-humped
states contribute to a mechanism of resonant spreading in the
NLSE.

In our study, we would like to distinguish between reso-
nant spreading (caused by the double-humped states) and
diffusive spreading from one state to its neighbors. For this
purpose, we had to find realizations where the humped states
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FIG. 1. (Color online) A pair of double-humped states for the
linear system (2). The states are marked with blue solid line and
green dashed line.
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are located far from each other (in comparison to the local-
ization length, in our case £=6). The probability to find
double-humped states with humps located at a distance L is
proportional to exp(—L/&) [11] and therefore realizations
which couple states located far from each other are very rare
(as we are looking for them in a finite region in real space).
In order to overcome this problem and create a pool of real-
izations with double-humped states in some region in real
space, we have developed a strategy for “double humps
hunting.” We choose some random potential having localized
eigenstates in the linear case (Anderson localization). We
focus on two sites so that we will have double-humped states
which are localized on these two sites. These sites will be
denoted by O and P in what follows. The Hamiltonian of this
realization is diagonalized, which results in a diagonal matrix
with eigenenergies on the diagonal. Now, we vary the site
energy of the original model on one site (say P) of the two
sites mentioned above. According to Feynman-Hellman
theorem, when we increase monotonically the potential of a
site, its energy is monotonically increasing and we can easily
find a point where the two diagonal terms are approximately
equal. Since we change the realization, the Hamiltonian is
not diagonal anymore and the sites are coupled by matrix
elements of the order of exp(—L/§). Taking the potential re-
alization which creates almost identical energies in the diag-
onal of the Hamiltonian (written in the initial eigenstates
basis), we can usually construct double-humped states for
this realization. In this way, we found a set of realizations
having double-humped states with distance of 25 sites (about
four localization lengths in our case) between the humped
sites.

After choosing appropriate realizations, we had to know
which values of B should be chosen in order to see the in-
fluence of the double humps. If we choose very small values
of 3, the system will behave similarly to the linear case and
a wave packet initially localized on one-humped site will
oscillate between the humped sites for very long times. How-
ever, for large values of S, the linear eigenstates become
irrelevant very quickly (compared to the period of the oscil-
lations) and the correlation between the double-humped
states is broken before they have a chance to affect the dy-
namics. Moreover, high values of B suppress the oscillations
between the humped states even in the double-well case [13]
where there is no mixing with other states. So, we have to
choose the B values very carefully. For this purpose, we use
a double-well model [14] to set the scale of the effect of B.
In particular, we find numerically for each disorder realiza-
tion a value of B, for which only 41-1 of the wave function
oscillates between the humped sites O and P when the
double-humped states are detached in the computation from
all other states. When we run the dynamics of Eq. (1) for
double-humped realizations with 8=/3;,,, we can see clearly
the influence of the resonance and we are still able to observe
spreading for reasonable times.

In other words, the nonlinearity has two effects: destroy-
ing the double-humped states and populating other states of
the linear model. In order to distinguish the two effects, we
compare to the double-well model with a nonlinear term,
where the two lowest-energy states can be assumed isolated
from the other states.
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FIG. 2. (Color online) Correlation between R and B, (blue
asterisks).

The difference between the double-well model and Egs.
(1) and (4) is that in the double-well model, only two states
participate in the dynamics (see the Appendix) and only
these were taken into account for this model. Therefore, nu-
merical calculations for the double-well model are much
faster and allow us to estimate the behavior of Egs. (1) and
(4) without performing time consuming (split-step) calcula-
tions. In addition, the dynamics in the double-well problem
is periodic and gives us the time scale of the oscillations.
Deviations of Eq. (1) from the double-well model appear
when additional states become involved in the dynamics.
This happens, naturally, when we increase B. So, first we
should calculate S, the largest 8 for which the double-well
model dynamics is still similar to Eq. (1), and make sure that
B.> B4 (otherwise, our results for B,,, will have no clear
meaning for the NLSE). We have located an initial wave
packet u, around one of the humps (as a superposition of
the two double-humped states) at site O. We have followed
the population difference between the double-humped states
in the double-well model and in the NLSE during one time
period T which is numerically calculated for each realization
based on the nonlinear double-well model (see Appendix).
B, was defined as the highest B value for which
2L Waouble-we = WnLsE) 2d? <0.001, where w denotes the
population difference. B, is expected to be high when the
overlap between the double-humped states and other states in
the system is small and we can see a correlation between f3,.
and the parameter
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The index i in the sum runs over all the eigenstates on the
lattice except for the two double-humped states. E, is the
energy of the initial wave localized at site O and E; are the
eigenvalues of the system. The numerator is given by Eq.
(5). The reasoning for the importance of Eq. (7) is explained
in [4,7,8] (where R is defined in a slightly different way) and
the correlation to 8. is shown in Fig. 2. The correlation de-
teriorates when ViOOO is replaced by other quartic combina-
tions of components of u,, , and u,, [see Eq. (5)].

In order to see the influence of the double-humped states
in specific realizations, we should compare them to realiza-
tions where such states are broken that will be named “bro-
ken realizations.” The broken realizations are the same set of
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FIG. 3. (Color online) The second moment as function of time
for a representative double-humped (solid blue) and broken (dashed
green) realizations for wave packets started in the vicinity of O.

realizations as the realizations where double-humped states
are found except for one fundamental difference—we have
changed the disorder potential in one of the humped sites to
be zero, namely, €p=0, and by this broke the coupling and
destroyed the double-humped states without causing qualita-
tive changes to the other eigenstates of the system. For each
pair of double-humped and “broken” realizations, we have
chosen an initial wave function {u,,} located around O as a
superposition of the two double-humped states and followed
the evolution of the wave function. The evolution of the
wave packet in time was calculated according to Egs. (1) and
(4) with B=p,,4 using the split step method [7]. A quantity
which interests us when we measure the spreading of a wave
function is the second moment, defined as

2

I’I’lz:E (n_ﬁ)2|(//n ’ (8)

where 7= ,1|¢,|? is the averaged location of the wave func-
tion. When we compare the growth in the second moment for
double-humped realizations and the broken realizations, we
see that the second moment of the double-humped realiza-
tions grows faster; when the realizations are selected as was
outlined above and in both cases, the initial wave packet is
localized at O. Some examples are presented in Fig. 3. We
examined 25 realizations of this form and the behavior pre-
sented in Fig. 3 is representative of all of them. This indi-
cates that double-humped states do substantially contribute
to the spreading process of a wave function more than typi-
cal states.

In conclusion, we see that in the presence of nonlinearity
that is not too strong, the spreading of a wave packet pre-
pared initially near some site O is substantially stronger if
there is a double-humped state with one of its humps near O
than if the states peaked near O are single humped. We found
that there is a regime of values where f is sufficiently small
so that the double-humped structure is preserved but the
packet is not only oscillating between the humps but also
leaks to other states, leading to spreading. In order to find
this nonlinearity regime, we have used the double-well
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model to isolate the two double-humped states from the other
eigenstates of Eq. (2). We found that if 8 is small enough so
that the oscillations between the two states are not sup-
pressed in the double-well model, then the double-humped
states will contribute to the spreading for the NLSE. Since
double-humped states are suppressed and do not contribute
to the spreading for high nonlinearities, we cannot conclude
that they dominate the spreading of the NLSE. Exploring
what is the dominant mechanism for this problem is left for
future a research.
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APPENDIX: DOUBLE-WELL MODEL

In order to predict the response of the double-humped
states to variations of 3, we first investigate a model where
only two states exist: the double-well model. In this way, we
avoid the influence of the other states of the NLSE. For this
model, the NLSE is

0V (r,1)
RAAUL)

Pt V2W(r,1) + [e(r) + B (r,0)PT¥(r,1),

(A1)
where €(r) is the double-well potential. It is convenient to
write the wave function in the form [15]

W (r,1) = (1) i (r) + (1) ho(r),

where ¢,(r) and ¢,(r) are symmetric and antisymmetric
combinations of the double-humped eigenstates (and there-
fore they are orthogonal) while ,(z), ,(¢) are the ampli-
tudes of ¢,(r), ¢,(r) at time ¢. Equation (A1) takes the form

(A2)

d d
i[dn% : @f} RTARRIARS
+[e(r) + BV (r,H[F 1V (r,1).

After multiplying both sides by ¢,(r) (¢, and ¢, are local-
ized and therefore they can be chosen to be real) and inte-
grating over r, Eq. (A3) becomes

(A3)

d
i% - _f (11 V2 + thrh VP by ldr
+J b1 + bychi g )dr

+8 f drli i b1 + (Wi dis + 2 v b by
+ Qv + YY) b1 + [l B3 b ] (A4)

Following [14], it is convenient to write Eq. (A4) as
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d .
% =— (@ + Q| P gy — iK iy = iQA i + A1

+ Bys i + Aol — 24, |y P i), (A5)

where

W =- f Vil + et +2B¢i f3)dr,
o= @i-2600ar
K=- f (Vo Vb + €1 ),

A=-8 J biodr, Ay=-B f Bridr,

B=-p f bidr, (A6)

and we have used the relation [¢;]>+[¢»*=1. In a similar
way,

d N
% = —i(wy + Q| |ty — iK iy — i(2A 4 + Agip i}
+ By + A [P = 24,y P (A7)
where
wy=- f (Val* + ¢y + 2841 ¢3)dr (A8)

and Q,=-8f (¢§—2¢%¢§)dr. In order to establish the con-
nection with the double-humped states of Eq. (1), the coef-
ficients of Egs. (A6) and (A8) were taken from the
Schrodinger Eq. (1). First we have expressed these coeffi-
cients for the linear case =0 where only w,, w,, and K do
not vanish. For this purpose, we find ¢, and ¢_, the double-
humped eigenstates of Eq. (1) for 8=0. The amplitudes i, (¢)
and i,(r) of the symmetric and antisymmetric combinations

619 = (61 + ), (A9)
V2
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1
h(r) = —=(e,— @) (A10)
V2

satisfy the Schrodinger Egs. (A5) and (A7). Therefore, when
we write the Hamiltonian (1) in a basis composed from ¢,
and ¢, in addition to all the single-humped eigenstates of Eq.
(1), K will appear as an off-diagonal term which couples ¢,
and ¢, while w; and w, will appear as diagonal terms. In the
nonlinear case, K stays the same while w],2=wllif‘2€“’
-2Bf ¢%¢%dr. In order to find the corrections to w; , for the
nonlinear Hamiltonian and to calculate all the other coeffi-
cients (A6) and (A8), we find numerically the vectors ¢, and
¢, with the help of Egs. (A9) and (A10) from Eq. (1) as
explained above.

It is convenient to follow the dynamics described by the
variables u= ¢+ i, v=—i(— o), and w=|¢[?
—|4p|?>. After some simple procedures, we obtain a vector
equation of the motion [14],

@ =p X T,

" (A11)

in which p=(u,v,w) is a vector characterizing the state of
the coupled system on the unit sphere, i.e., u>*+v>+w?=1,

and T= (Ty,T,,T;), where

1 1
Tl =w;—wy+ 59](1 +W) - 592(1 —W) + (A] —Az)u,

(A12)
T,=-Bv, (A13)
T3=2K+2(A;+A) +Bu—-A|(1-w)-A,(1+w). (Al4)

It is easy to find (numerically) w(z) which gives us the time
period and the amplitude of the double-well oscillations. For
small nonlinearities, these results are good estimations of the
NLSE behavior on a lattice. In this work, we have used Eq.
(A11) to find B4 values. For this purpose, we have chosen
an initial value for w which represents a wave packet local-
ized around site O. Following the dynamics of w(¢) for dif-
ferent values of nonlinearity 8, we have found the maximal
B for which at least 4]-‘ of the wave packet is oscillating be-
tween sites O and P. This B is ).
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